Chern classes of compactifications of reductive groups
نویسنده
چکیده
In this paper, I construct noncompact analogs of the Chern classes of equivariant vector bundles over complex reductive groups. Then “Chern classes” of the tangent bundle are used to carry over to the case of an arbitrary reductive group some of the well-known results that hold for a complex torus. One of the results of this paper is a formula for the Chern classes of all regular equivariant compactifications of reductive groups. It implies a formula for the Euler characteristic of complete intersections in reductive groups. In the case, when a complete intersection is a curve this formula gives an explicit answer for the Euler characteristic.
منابع مشابه
2 00 5 Chern classes of reductive groups and an adjunction formula Valentina
In this paper, I construct noncompact analogs of the Chern classes of equivariant vector bundles over complex reductive groups. For the tangent bundle, these Chern classes yield an adjunction formula for the Euler characteristic of complete intersections in reductive groups. In the case where the complete intersection is a curve, this formula gives an explicit answer for the Euler characteristi...
متن کاملEquivariant Chow Ring and Chern Classes of Wonderful Symmetric Varieties of Minimal Rank
We describe the equivariant Chow ring of the wonderful compactification X of a symmetric space of minimal rank, via restriction to the associated toric variety Y . Also, we show that the restrictions to Y of the tangent bundle TX and its logarithmic analogue SX decompose into a direct sum of line bundles. This yields closed formulas for the equivariant Chern classes of TX and SX , and, in turn,...
متن کاملOn Intersection Indices of Subvarieties in Reductive Groups
In this paper, I give an explicit formula for the intersection indices of the Chern classes (defined earlier by the author) of an arbitrary reductive group with hypersurfaces. This formula has the following applications. First, it allows to compute explicitly the Euler characteristic of complete intersections in reductive groups thus extending the beautiful result by D. Bernstein and Khovanskii...
متن کاملAbout remainders in compactifications of paratopological groups
In this paper, we prove a dichotomy theorem for remainders in compactifications of paratopological groups: every remainder of a paratopological group $G$ is either Lindel"{o}f and meager or Baire. Furthermore, we give a negative answer to a question posed in [D. Basile and A. Bella, About remainders in compactifications of homogeneous spaces, Comment. Math. Univ. Caroli...
متن کاملGeometry of equivariant compactifications of Ga
In this paper we begin a systematic study of equivariant compactifications of Ga . The question of classifying non-equivariant compactifications was raised by F. Hirzebruch ([10]) and has attracted considerable attention since (see [5], [15], [12] and the references therein). While there are classification results for surfaces and non-singular threefolds with small Picard groups, the general pe...
متن کامل